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In this paper, the fuzzy multi-depot vehicle routing problem with
simultaneous pickup and delivery (FMDVRP-SPD) is investigated.
In FMDVRP-SPD, a set of customers with simultaneous pickup
and delivery demands should be supplied by a fleet of vehicles that
start and end their tours at the same depot. In the problem, both
pickup and delivery demands of customers are fuzzy variables. The
objective of FMDVRP-SPD is to minimize the total cost of a
distribution system, including vehicle traveling cost and vehicle
fixed cost. To model the problem, a fuzzy chance-constrained
programming model is proposed based on the fuzzy credibility
theory. A heuristic algorithm combining K-means clustering
algorithm and ant colony optimization is developed for solving the
problem. To achieve an appropriate threshold value of parameters
of the model, named ‘“vehicle indexes”, and to analyze their
influences on the final solution, numerical experiments are carried
out. Moreover, the efficiency of the heuristic algorithm is
demonstrated by using a standard benchmark set of test problems.

© 2017 IUST Publication, 1JIEPR. Vol. 28, No. 3, All Rights Reserved

1. Introduction

salesman problem (TSP) [4]. In the VRP, there is

The transportation management includes all
stages of the production and distribution systems
and represents a related component (generally
from 10% to 20%) of the final cost of the goods
[1]. Thus, any improvement in transportation
management provides reducing the cost of the
goods [2]. Vehicle routing problem (VRP),
located in the distribution systems, is the classic
problem initially introduced by Dantzig and
Ramser in 1959 [3]. The problem plays a pivotal
role in logistics and is derived from the traveling
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a set of customers who have to be visited by a
vehicle, and this vehicle has to start and finish its
trip at the same depot. This is basically a
reflection of real-life distribution problems such
as delivering and picking up passengers, mail,
packages, and different kind of goods [5]. The
VRP is regarded as one of the most challenging
integer programming problems. Lenstra and
Rinnooy [6] showed that the VRP is an NP-hard
combinational optimization problem; therefore, it
is difficult to find its optimal solution [7]. While
exact algorithms solve small-sized problems [8,
9], issues exist for the large-sized problems or
special types of the VRP.

Many variants of the VRP have been developed
so far to model real-world problems. The vehicle
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routing problem with simultaneous pickup and
delivery (VRP-SPD) is one of the variants of the
VRP and belongs to the reverse logistics [10].
There are various real cases for the problems,
such as distribution of bottled drinks, chemicals,
LPG (liquid petroleum gas) tanks, laundry
service of hotels and schools, etc., where
customers are typically visited for double service
[11]. In the case of the bottled drinks, for
instance, full bottles are delivered to customers,
and empty ones are brought back either for reuse
or for recycle [12]. The VRP-SPD is an Np-hard
problem, and even it is more complicated than

the VRP because of the fluctuating loads on the
vehicle along a route [13]. In the VRP, the total
load of each route must not exceed the capacity
of the vehicle. However, in VRP-SPD, the net
change (decrease or increase) in the vehicle load
for each customer of the route must be monitored
by the vehicle capacity [14, 15]. For example, the
sequence of 0 > 1 — 2 — 3 — 0 is feasible in
Fig. 1, but the routes or sequences of 0 —» 3 — 1
—2—>00r0 —2—1— 3 — 0 are not. This
event indicates the complexity of the VRP-SPD
and suggests the use of extended equations in the
modelling of the VRP-SPD against VRP.

<> Customer

[ ] i Vehicle with
'.i OLh capacity of 20

D Used depot

|:| Vehicle load

[Pickup. Delivery]

D Not-Used depot

— Rout of vehicle

Fig. 1. lllustrative example of the VRP-SPD

Nowadays, due to the development of
communication, information technology and the
increasing pressure of transportation cost,
logistics-based companies often use more than
one depot instead of traditional fixed zone service
of single depot. The problem is known as the
multi-depot vehicle routing problem (MDVRP)
[16]. On the other hand, uncertainty in vehicle
routing problem arises in modeling a number of
business situations that emerge in the area of
distribution [17]. Fuzzy logic has been used to
solve many applied problems so far. The need to
use fuzzy logic in problems arises whenever there
are some vague or uncertain parameters. For
example, the information about demand of each
customer is often not precise enough and
customer demand is assumed as a fuzzy number

[18]. As an example, based on numerical
experiment, it can be concluded that the demand
of a customer is “around 40 units”, usually
“between 30 and 70 units”, etc. In most cases,
there are no sufficient data for fitting a
probability distribution to demands of customers,
and fuzzy logic can be used to deal with
uncertainty of these cases [19].

In this paper, the fuzzy multi-depot vehicle
routing problem with simultaneous pickup and
delivery (FMDVRP-SPD) is observed. The
FMDVRP-SPD is a variant of the MDVRP and
belongs to the class of the Np-hard problems.
Although the MDVRP has been studied
extensively in the literature, the FMDVRP-SPD
has received scant attention from researchers so
far. Table 1 shows the publications of MDVRP
and its variants. As seen in this table and to the

International Journal of Industrial Engineering & Production Research, September 2017, Vol. 28, No. 3



Two-stage Stochastic Programing Based on the
Accelerated Benders Decomposition for Designing

Ali Akbar Hasani 327

best of our knowledge, there are no works on the
FMDVRP-SPD in the literature, and this paper is
the first attempt in the field of MDVRP that
considers the observations of fuzzy and
simultaneous pickup and delivery demands,
together. More precisely, this paper contributes to
the FMDVRP-SPD in the following directions:
(a) a fuzzy-chance constrained programming

(FCCP) is proposed based on the credibility
theory to model the problem; (b) a heuristic
algorithm based on K-means clustering algorithm
(K-MCA) and ant colony optimization (ACO) are
developed to solve the problem; (c) the
sensitivity analysis on the main parameters of the
model is analyzed.

Tab. 1. summary of the related work on MDVRP

Author(s) Year Method used (Contribution or Case study)

Tillman [20] 1969  Clarke & Wright saving-based algorithm

Wren and Holiday [21] 1972 Saving based & refinements

Cassidy and Bennet 1972  Saving based & refinements (School meal delivery problem)

Gillett and Johnson [22] 1976  Clustering & sweep heuristic

Golden and Magnanti [23] 1977 Borderline customer & saving-based
Saving based & route first, cluster second (distribution of

Ball etal. [24] 1983 chemical product in the USA and Canada)

Perl and Daskin [25] 1985 Incorporate (P) in location routing & formulation

Benton [26] 1986 Saving methoq & b.ranch and bound (delivery to retail outlets
from a bakery in Indiana)

Perl [27] 1987 (T—C) modified distance formula & a saving variant

Laporte et al. [28] 1988  Branch and bound

. Exact methods & heuristic (distribution problem of the hardware

Min et al. [29] 1992 products in the USA)

Chao et al. [30] 1993  Record to record

Renaud et al. [31] 1996  Tabu search (TS)

Salhi and Sari [32] 1997  Multi-level heuristic

Cordeau et al. [33] 1997 TS

Thangiah and Salhi [34] 2001  Genetic algorithm & clustering

Tarantilis and Kiranoudis List-based threshold accepting (Open MDVRP, the distribution

2002 .

[35] of meat in Greece)

Giosa et al. [36] 2002  One & two stage methods (MDVRP with time windows)

Polack et al. [37] 2004 VNS (MDVRP with time windows)

Lim and Wang [38] 2005  Several heuristics (MDVRP with fixed vehicle fleet)

Nagy and Salhi [39] 2005 Comblgathn of a number of heuristics (MDVRP with pickups
and deliveries)

Pisinger and Ropke [40] 2007  Adaptive large neighborhood search

Ho et al. [41] 2008  Genetic algorithm

Pepin et al. [42] 2009 Five heurlstlcs & formulations (MDVSP with vehicle
scheduling)

Zhang et al. [43] 2011  Formulation & scatter search (MDVRP with weight related cost)

Yu et al. [44] 2011  Ant Systems

Kuo and Wang [45] 2012 VNS (MDVRP with loading cost)

Rahimi-Vahed et al. [46] 2013 A path relinking algorithm (MDVRP with periodic)

ng;?kata Narasimha et al. 2013  Ant colony optimization (Min-max MDVRP)

ﬁ&l}tardo and  Martinelli 2014 Formulation and exact algorithm

Escobar et al. [49] 2014  Hybrid granular tabu search procedure

Luo and Chen [50] 2014  Shuffled frog leaping algorithm

Salhi et al. [16] 2014 VNS (MDVRP with heterogeneous vehicles)

Juan et al. [51] 2015 A hybrid approach with ILS

Kachitvichyanukul et al. 2015 A variant of PSO (MDVRP with multiple pickup and delivery)

[52]
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Wang et al. [53] 2016  Heuristic algorithm (Min-max MDVRP)

Hybrid approach combining statistical learning techniques with
Calvet et al. [54] 2016 a metaheuristic (MDVRP with market-segmentation)
Bae and Moon [55] 2016  Heuristic with a genetic algorithm (MDVRP with time windows)
Wang et al. [56] 2016  Heuristic algorithm (MDVRP with minimum service time)

The remainder of this paper is organized as
follows. In the next section, the literature review
of the works related to the fields of VRP-SPD is
summarized. In section 3, some basic concepts of
fuzzy theory needed for modeling the problem
are given. Section 4 defines the FMDVRP-SPD
in more details and presents a fuzzy chance-
constrained programming model using the fuzzy
credibility theory. Details of the heuristic
algorithm to solve the FMDVRP-SPD are
presented in section 5. In section 6, numerical
experiments are given to reveal the performance
of the proposed method. In the final section, the
conclusion remarks of the paper are presented.

2. Literature Review
Table 2 summarizes the related works on VRP-
SPD, describing their main contributions and/or
approaches. Min [57] was the first researcher to
tackle the VRP-SPD, considering a real case
faced by a public library, with one depot, two
vehicles, and 22 customers. To solve the
problem, the customers were first clustered into
groups and then, in each group, the travelling
salesman problems (TSPs) were solved. The
infeasible arcs were penalized (their lengths set to

infinity), and the TSPs were solved again. Halse
[58] solved the VRP-SPD using a cluster-first
routing-second approach. In the first stage, the
assignment of customers to vehicles was
performed, then a routing procedure based on 3-
opt was used. Solutions to problems with up to
100 customers were reported to exist in this
work.

Nagy and Salhi [39] proposed a method that
firstly found a solution to the corresponding VRP
problem and then modified the solution to make
it feasible for MDVRP-SPD. They both adopted
the idea of borderline customers, that is,
customers were divided into two subsets, namely
borderline and non-borderline customers. The
non-borderline customers were assigned to their
nearest depots, then the borderline customers
were inserted into the single depot vehicle
routing one at a time. Dell’Amico et al. [59]
found the optimum solution for instances up to 40
customers of VRP-SPD by a proposed exact
algorithm based on branch-and-price approach.
Gajpal and Abad [60] presented the saving
heuristic and the parallel saving heuristic for
VRP-SPD. They used a cumulative net-pickup
approach to checking the feasibility when two
existing routes were merged.

Tab. 2. Related works of the VRP-SPD

Author(s) Year contributions and/or approaches.

Min [57] 1989 First work, case study in a public library

Halse [58] 1992 Cluster-first, route-second strategy, 3-opt
procedure

Salhi and Nagy [61] 1999 Insertion based heuristics
Constructive  heuristic based on the

Dethloff [62] 2001 cheapest insertion, radial surcharge and
residual capacity

Angelelli and Branch-and-price for the VRP-SPD with

.. 2001 . .

Mansini [63] time windows

Vural [64] 2002 Genetic algorithm

Gokce [65] 2003 Ant colony

Fggike and Pisinger 2004 Large neighborhood search

. Heuristics with  different levels of
Nagy and Salhi [39] 2005 feasibility
Crispim and 2005 TS + VND

Brandao [67]

Dell’Amico et al.
[59] 2005

Chen and Wu [68] 2006

Branch-and-price based on dynamic
programming and state space relaxation
Record-to-record travel + Tabu lists
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Montane and
Galvao [69] 2006 s
[G7r0"]’k°“ka‘a et al 2007 TS for the VRP-SPD with a single vehicle
Bianchessi and 2007 Constructive and local search heuristics
Righini [71] TS+VNS
Subramanian  and 2008 ILS heuristic for the VRP-SPD with time
Cabral [72] limit
[S%b]r"‘maman et al 2008 ILS + VND heuristic
[lec]harladls et al 2009 TS + Guided local search
fgg]p al and  Abad 2009 Ant colony system
[S;lélo]ramanlan et al. 2010 RVND + IS
[Z7215(:]har1ad1s ot al 2010 Adaptive memory algorithmic
Catay [14] 2010 Ant colony optimization
Zachariadis and
Kiranoudos [76] 2011 Local search approach
Tasan and Gen [77] 2012 Genetic algorithm
Goksal et al. [78] 2013 PSO + VND
[S7u9b]raman1an et al. 2013 ILS + RVND
Rieck,and 2013 Two mixed-integer linear model
Zimmermann [80] formulations for the VRP-SPD
Liu et al. [81] 2013 VRP-SPD w1th t{me windows for the home
health care logistics
Luo and Chen [50] 2014 Shuffled frog leaping algorithm
Juan et al. [51] 2015 A hybrid approach with ILS
Li et al. [82] 2015 ILS heuristic for the VRP-SPD with multi

depots

Recently, many metaheuristics have been
successfully applied to solve VRP-SPD. For
instance, Catay [14] extended an ant colony
algorithm, employing a new saving-based
visibility ~ function and a  pheromone
reinforcement  procedure. Zachariadis and
Kiranoudos [76] proposed a local search
approach which efficiently explored rich solution
neighborhoods by statically encoding tentative
moves into special data structures. Tasan and Gen
[77] developed a genetic algorithm for solving
VRP-SPD, which wuses permutation-based
representation and ensures feasibility. Goksal et
al. [78] presented a heuristic solution approach
based on particle swarm optimization (PSO) in
which a local search was performed by a variable
neighborhood  descent algorithm  (VND).
Moreover, it implemented an annealing-like
strategy to preserve the swarm diversity.
Subramanian et al. [79] proposed a hybrid
algorithm for a class of vehicle routing problems

with the homogeneous fleet, including VRP-SPD.
The hybrid algorithm hybridized an iterated local
search-based heuristic approach and a set
partitioning formulation, called ILS-RVND-SP.
Li et al. [82] developed a metaheuristic based on
iterated local search for MDVRP-SPD. In order
to strengthen the search, they applied an adaptive
neighborhood selection mechanism embedded
into the improvement steps and the perturbation
steps of iterated local search, respectively. To
diversify the search, new perturbation operators
are proposed. Their results indicated that the
proposed approach outperforms the previous
methods for MDVRP-SDP.

3. Fuzzy Credibility Theory
The concept of the fuzzy set was introduced by
Zadeh [83] via the membership function and
applied to the wide varieties of real problems,
thereafter. To measure a fuzzy event, the term
fuzzy variable was proposed by Kaufmann [84],
and later Zadeh [85] proposed the possibility
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measure theory of fuzzy variable. Although the
possibility measure has been widely used, it has
no self-duality property. However, a self-dual
measure is absolutely necessary in both theory
and practice on various problems. In order to
define a self-dual measure, a modified form of
the possibility theory, called credibility theory,
was introduced by Liu [86] and studied very
recently by many scholars all around the world.
Since a fuzzy version of MDVRP-SPD with
credibility theory will be modeled in this paper, a
brief introduction to the basic concepts and
definitions used is presented as follows [18]:

Let ® be a nonempty set, and P be the power set
of ©. Each element in P is called an event, and ¢
is an empty set. In order to present an axiomatic
definition of possibility, it is necessary to assign a

number POS{A} to each event 4, which indicates
the possibility that 4 will occur. To ensure that
the number POS{A} has certain mathematical

properties, the following four axioms are
approved [86]:

Axiom 3.1 Pos{®} =1,
Axiom 3.2 Pos{¢} =0;
Axiom 33 For weach 4, € PO),

Pos {U Al.} = supremum,Pos {4, } ;
i=1

Axiom 3.4 If ©; is a non-empty set, and the set
function Pos, {}; i =1, 2, ..., n, satisfies the above
three axioms and @ = @, X @, x "~ x @,, then, for
each 4 € P(0), Pos{ A} =supremumy, , ,._,

Pos {61} A Pos,{0,} A A Pos,{6,}.

The above four axioms form the basis of
credibility measure theory; all concepts of
credibility theory can be obtained by them [86].

Definition 3.5 Let (0, P(0), Pos) be a possibility
space, and 4 be a set in P(®), then the necessity
measure of A4 is defined by Nec{4} = 1 -
Pos{A4}, such that 4° is the complement of event
A.

Definition 3.6 Let (0, P(0), Pos) be a possibility
space, and 4 be a set in P(®), and then the
credibility measure of A is defined by Cr{4}

:% (Pos{A} + Nec{d}).

Considering definition 3.6, the credibility of a
fuzzy event is defined as the average of its
possibility and necessity. A fuzzy event may fail
even though its possibility achieves 1, and hold
even though its necessity is 0. However, the

fuzzy event must hold if its credibility is 1, and
fail if its credibility is 0 [86]. As mentioned
before, the credibility measure is self-dual, and in
theory of fuzzy subsets, the law of credibility
plays a role similar to that played by the law of
probability in measurement theory for ordinary
sets [87].

Now, consider a triangular fuzzy variable d=

(d\, dy, d3) for demand of a customer where d is
described by its left boundary d; and its right
boundary ;. Thus, the analyst studying that
problem can subjectively estimate that, based on
his experience or available data, the demand of
the customer will not be less than d, or greater
than d;. The value of d, related to the grade of
membership of 1 can also be determined by a
subjective estimate. If the certain demand of a
customer is considered by the value of r, the
possibility, necessity, and credibility are easily
obtained as follows [88]:

1 if r<d,

Posfdzr={-2C itd<r<d, (1)
d3 _dz

0, if r>d,
1 if r<d
Nec {d > =] 27" ifd<r<d, ()
dz _dl
0, if r>d,
1 if r<d,
24,747 e g <<,
- 2d,—d,)

Cridzri=1 " 3)
57T ifd <r<d,
2d,—d,)

0, if r>d,

4. Problem Definition and
Formulation
FMDVRP-SPD extends the basic VRP in such a
way that there are multiple depots in different
locations and there are some customers who have
fuzzy demands, which consist of two parts: the
receiving as well as shipping goods. Each vehicle
in FMDVRP-SPD is used only in one route and
starts and finishes its route at the same depot.
Moreover, a fleet of homogeneous vehicles is
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available at each depot [82]. The objective of the
problem is to determine the optimal routes by
minimizing the total cost related to the number of
vehicles and traveling of vehicles. In short, the
following constraints must be met in FMDVRP-
SPD:

(1) Each vehicle starts and ends at the same
depot.

(2) Each customer is only visited once by a
vehicle.

(3) Each customer has a fuzzy demand composed
of two parts of pickup and delivery.

(4) The maximum load of each route must not
exceed the vehicle capacity at each point of the
route.

(5) The total duration of each route (including
travel and service time) should not exceed the
preset limit.

(6) Number of vehicles located at each depot is
predefined, and all the vehicles are homogeneous.
In FMDVRP-SPD, in addition to the above
assumptions, the pickup and delivery demands of
costumers are considered as triangular fuzzy

Cr= Cr{Qk +(15k+1 _jlm) 2 O} = Cr{(dkH = Pra

= CV{(dpl,k+1 G55 P2 pi —Dog> P30 — G ) < }

0,
93 — dpl,k+l

numbers such as ﬁj: (P1j> Paj> p3j) and c?j = (dyj,

dyj, d3j) for the ™ customer, respectively. Let the
vehicles have equal capacity that is denoted by Q,
and it can be changed to the triangular fuzzy

number as Q =(0, 0, Q). To model the problem
with credibility theory, after serving the first &
customers, the available capacity of the vehicle
will equal

Q :Q+(Zl;:1ﬁj _Z:‘;j) :(QI,k’ 9> k> %,k)

]

in which Q) is also a triangular fuzzy number by

using the rules of fuzzy arithmetic. Thus, after
serving k customers, if the capacity of the vehicle
in its route is enough and if the relation

O +(Pro—d,y )20 is fulfilled, the vehicle

certainly can serve the k+1™ customer. On the
other hand, the credibility that the next customer
demand does not exceed the remaining capacity
of the vehicle can be obtained as follows:

“4)

if dpl,k+1 245,

~ ~ } B 2X(q54 = APy T APs 4 — Ga) ’
dp3,k+1 i~ 2x (dpz,k+1 - %,k)

Cr{dk+1 ~Din S0,

if dpl,k+1 <45 dpz,k+1 24y,
(%)

1,
Note that the equation of
Ay =P = (dp1,k+1a ap; s dp3,k+1) is

replaced in formulations of (4) and (5). To
describe the meaning of the credibility theory for
modeling of the FMVRP-SPD, the following
statements are considerable; There is no doubt
that if the remaining goods in the vehicle are high
and the net demand (i.e., different between
pickup and delivery demands) at the next
customer is low, then the vehicle’s chance of
being able to finish the next customer’s service
becomes greater. This means that the greater the
difference between available goods and net
demand for the next customer, the greater
preference to send the vehicle to serve the next
customer. According to formulation (5), the
preference index is designated by Cr which
denotes the magnitude of the preference for

2x (%,k - dpz,k+1 + dps,k+1 - ‘h,k) ’

if dpz,zm <qyys dp3,k+l 24,

if dp},k+1 <4

sending the vehicle to the next customer after it
served the current customer. It is obvious that Cr
€ [0, 1]. When Cr = 0, driver is completely sure
that he should return the vehicle to the depot.
When Cr = 1, the driver is absolutely certain that
he can serve the next customer by the remaining
goods having in his vehicle. Let the dispatcher
preference index be designated by Cr’, where Cr"
€ [0,1]. Therefore, according to Cr” value and the
credibility that the next customer demand does
not exceed the remaining capacity of the vehicle,
a decision must be made as to whether to send the
vehicle to the next customer or return that to the
depot. Thus, we can say that if relation Cr > Cr’
is fulfilled, then the vehicle should be sent to the
next customer; otherwise, the vehicle should be
returned to the depot and sent back again to the
next customer after loading sufficient goods [89].
Moreover, the vehicle routes (or planned routes)
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are designed in advance by applying the proposed
heuristic algorithm. But, the real value of demand
of a customer is only characterized when the
vehicle reaches the customer. Due to uncertain
demand of the customers, a vehicle might not be
able to serve a customer once it arrives there due
to insufficient capacity. It is assumed that, in such
situations, the vehicle returns to the depot to load
itself and then returns to the customer where it
had a “failure” and continue its service along the
rest of the planned route. This arises an additional
distance due to route “failure”. Hence, an
additional distance should be considered for the
vehicle due to the route “failure” [88].

Parameter Cr* has an extremely great impact on
both the total length of the planned routes and on
the additional distance. For example, lower
values of parameter Cr express the dispatcher’s
desire to use all the capacity of the vehicle. These
values result in shorter planned routes. But, lower
values of parameter Cr increase the number of
circumstances where a vehicle meets a customer,
but it is unable to serve that, thereby increasing
the total distance it covers due to the “failure”. In
this situation, stochastic simulation can be used to
evaluate the additional distance due to route
“failure”. On the other hand, higher values of
parameter Cr~ are characterized by less utilization
of vehicle capacity along the planned routes and
fewer additional distance to cover due to
“failures”. As a result, the problem logically

arises for determining the value of parameter Cr,
and also other similar parameter of the model will
be described in the following, which will result in
the least total sum of planned route lengths and
additional distance.

The node-based fuzzy chance-constrained
programming (FCCP) formulation of the
FMDVRP-SPD is expanded as follows. Let G =
(N, A) be a complete directed network where N =
Ny UN¢ is a set of nodes in which N, and N
represent the depot and customers nodes,
respectively, and 4 = {(i, j): i, je N} is the set of
arcs. Each arc (i, j) has a nonnegative cost
(distance) c; and travel time ¢; that is based on
Euclidian distance and triangular inequality holds
(i.e., c; T ¢ = cy) and ¢; =1;. K is the vehicle
set and a fleet of m, identical vehicles with
capacity 0 with maximum travel time 7 and

fixed operating cost of f available at each depot.

Each customer i€ N, has pickup ( }31' ) and
delivery (d,) demands, so that they are fuzzy and

0 <P, d <Q. Moreover, each customer i N,

has a service time s;. The decision variables used
for the formulation of the FMDVRP-SPD are
given as follows:

1 If vehicle k travels directly from node i to nodej (V i,je N)

xkij =

0 otherwise and if max{(ci,. + c?/.), @:*p,), (b, + ‘z/‘)} >0 (Vi je N.)

ikij = the load of vehicle (or route) £ on arc (i, j) (V i, je N)

The node-based FCCP formulation of the
FMDVRP-SPD is proposed as follows:

Minimize z z Z S+ Zzz%.x,@. +B(6)

keK ieN, jeN¢ keK ieN jeN
subject to:
ZZkava VieN, 7
keK jeN,
ZZxkij:ZZxkﬁzl VieN. (8)
keK jeN keK jeN
Zxkl.jzzxkﬁsl VkeK,ieN, (9)
JEN¢ JeNe
D%, <|S|-1 VSeN., keK (10)
ieS je§S

> > x, =0  Vkek (11)
ieNy jeNy
ZZ(CU +s)x,; <T  Vkek (12)
ieN jeN
Cr(ly<0)2Cr' VkeK, VijeN (13)

G{z Y1o—> D1, =CZ—]~)Z,JZG”2 VieN.(14)
keK jeN keK jeN

xkl.je{O,l} VkeK,Vi,jeN (15)

I >0 VkeK,ijeN (16)

ki
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In the above formulation, objective function (6)
minimizes the sum of the fixed cost related to the
number of vehicles, the total travel cost of all the
vehicles, and total additional distances. Note that
the total additional distances, denoted by B, will
be obtained by the stochastic simulation
algorithm presented in section 5.3.2. Constraints
(7) guarantee that the number of vehicles
departing from each depot should not be more
than the number of available vehicles.
Constraints (8) state that each customer should be
visited exactly once and served within one route
only. Constraints (9) represent that each vehicle
starts and ends at the same depot. Constraints
(10) eliminate sub-tours and ensure that the
solution is connected. Constraints (11) indicate
that the vehicles cannot travel directly between
two depots. Constraints (12) express the
limitation of travel distance of vehicles. Fuzzy
chance constraints (13) indicate that total loads in
each point of a route must not exceed the vehicle
capacity at a confidence level. Fuzzy chance
constraints (14) show the flow conservation
equations at a confidence level. Finally,
constraints (15) and (16) specify the binary
variables and the range of decision variables,
respectively. Note that, for convenience of the
computational experiments in Section 6,
confidence levels of Cr' and C#* in the model are
called “vehicle indexes”.

5. The Proposed Heuristic Algorithm
A heuristic algorithm with three phases is
proposed to solve the FMDVRP-SPD. Fig. 2
shows three phases of the heuristic algorithm,
schematically. In the first phase, a K-means
clustering algorithm is applied to all customers
grouped (Fig. 2(a)). In the second phase, the
clusters of customers are assigned to the depots
based on proximity of the centroid of clusters and
depots (Fig. 2(b)). In the final phase, ant colony
optimization (ACO) is used to proper routes of
vehicles obtained (Fig. 2(c)). In this phase,
stochastic simulation is also applied to the
additional distances related to the routes
“failure”.
It is important to note that the heuristic algorithm
is repeated for a predefined number of iterations.
When the algorithm achieves a better solution, it
is replaced by the last best-known solution.
Moreover, since in the first phase, clustering
centroids are initialized randomly, clusters
formed in each iteration of the heuristic algorithm
are different together. This can ensure that the
proposed algorithm avoids confining sub-optimal

solutions. The details of each phase of the
heuristic algorithm are summarized in the
following sections.

a) 0

O

@ Customer [C] Opened depot

@ Gravity center ] Not-open depot

<« Assignment <— Planned route

<< Additional distance

Fig. 2. lllustrative example of the heuristic
algorithm.

5-1. K-means clustering algorithm

K-means clustering algorithm (K-MCA) was
introduced by Hartigan and Wong [90]. This
algorithm is one of the well-known squared error-
based clustering algorithms, which is both easy to
implement and reasonably effective in solving
many practical problems [91-93]. The aim of K-
MCA is to divide M points in N dimensions into
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K clusters so that the within-cluster sum of
squares is minimized [94]. The initial clustering
centroids are classified optimally according to the
minimum value of evaluating indicator Jc which
indicates the sum of error squares. It is defined as
in the following equation:

K
J=3 S lp-mf an)

k=1 peX;
where X denotes the set of clustering centers, m;
is the average value of the clustering center &, and
p is the data included (i.e., coordinates
customers) in the clustering center k. The search
of objective function is along the sum of error
squares decreasing direction. The K-means
clustering algorithm can resolve the clustering
problems effectively, but it depends on K value.
Improper K gives significant influences on the
actual effect on the algorithm [95]. In this paper,
for the first phase of the heuristic algorithm, the
following relation is used to determine K value:

NC NC'
Z Pis ZdB
i=1 i=l

K =|max{E— 2

(18)
0

where p;; and dj; are the right boundary of fuzzy
pickup and delivery demands of the i customer,
respectively. Q is the vehicle capacity, N¢

represents the set of customers, and (b] denotes

the smallest integer number of greater than b. It is
obvious that the more the number of clusters is,
the more vehicles will be used, causing an
increase in the transportation cost. Applying
equation (20), the minimum number of vehicles
with high fuzzy credibility value will be
achieved. K-MCA uses different agglomerative
techniques which can be mainly classified as
follows: (1) nearest neighbor, (2) farthest
neighbor, (3) weighted average, (4) moving
average, and (5) unweighted centroid [96]. In the
proposed heuristic algorithm, the nearest
neighbor  (also called single linkage)
agglomerative technique is utilized. K-MCA with
this technique is initialized with randomly
assigned K cluster centroids, and these cluster
centroids are updated after the assignment of all
data points to the closest clusters [94].
Typical convergence criteria in K-MCA are:
(I)no (or minimal) reassignment of data
points to new cluster centroid is reached,
(2)minimal decrease in squared error is
achieved. In the presented K-MCA, in
addition to the above criteria, once a new

customer is selected to be included in a
cluster, the following capacity conditions
must be held:

3) Total fuzzy pickup demands of the
current members of the cluster with new
customers should be less than the
capacity of the  wvehicle (ie.,

(ZﬁiJ—i_ﬁrH SQ)
i=1

4) Total fuzzy delivery demands of the
current members of the cluster with new
customer should be less than the capacity

of the vehicle (i.e., (Z CZJ + c?m < Q )-
i=1

5) Total fuzzy pickup demands of current
members of the cluster with fuzzy
delivery demand of new customer should
be less than the capacity of the vehicle

(ie., (2 ﬁi}uci,ﬂ <0).

The pseudo-code of the K-MCA is shown in
Algorithm 1.

Algorithm 1: K-means clustering algorithm.

01: input the number of clustering K and
coordinate all customers

02:fori=1,2, .., Kdo

03: initialize clustering centroids randomly

04: end for

05: while termination criteria not satisfied do

06: calculate distances and classify

07: calculate the average distance value of each
cluster

08: make new clustering centroids

09: end while

10: display K clusters

5-2. Allocating clusters to depot(s)

In this phase, the clusters are respectively
allocated to the depots. Each depot can serve as
many clusters according to the available vehicles
located at each depot, denoted by m, in
formulation. To allocate the clusters, the
Euclidian distance of the gravity center of a
cluster to all depots is calculated. Afterwards, the
cluster is allocated to the nearest depot. If the
nearest depot is not an available vehicle, the next
nearest depot is the candidate depot to allocate
the cluster. This procedure (i.e., allocating cluster
to the nearest depot with available vehicle(s)) is
repeated until all clusters are covered.
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5-3. Routing

5-3-1. Ant colony optimization

In the last phase of the heuristic algorithm, the
routing problem for each cluster and the relevant
depot is solved. The routing problem of
FMDVRP-SPD is the same as TSP, which is
solved using ACO. ACO is an intelligent
algorithm inspired by the foraging behavior of
ants [97]. Ants use a special chemical substance
on their way called pheromone to communicate
and exchange knowledge during individuals so
that other ants can pass the same route. The
pheromone of the shorter route increases;
therefore, more ants move from that way. This
behavior has inspired people to create artificial
ant systems to resolve combinatorial optimization
problems and obtain approximately optimal
solutions [95, 98, 99].

5-3-2. Stochastic simulation
As mentioned before, the pickup and delivery
demands of each customer are triangular fuzzy
numbers, so they cannot be directly considered as
deterministic numbers such as other algorithms
that solve the deterministic MDVRP-SPD. Since
the real value of demand is identified as the
vehicle reaches the customer, the simulation
experiment is utilized to specify the deterministic
value of pickup and delivery demands of each
customer. For each feasible planned route that the
solution of the heuristic algorithm stands for,
additional distances due to route “failures” (B)
are obtained by a stochastic simulation algorithm.
The following stochastic simulation algorithm
with four steps is proposed to reveal the real
pickup and delivery demands of each customer:
Step 1: For each customer, estimate the
additional distances by simulating “real” pickup
and delivery demands. The “real” pickup
demands were generated by the following steps:
(1) randomly generate a real number p in the
interval between the left and right bounds of the
triangular fuzzy number representing pickup
demand of the customer and compute its
membership m; (2) generate a random number 7;
r € [0,1]; (3) compare » and m, if » < m, then
“real” pickup demand of the customer is adopted
as p; otherwise, it is not accepted. In this case,
random numbers p and » are generated again and

again until random numbers p and r are found,
such that relation » < m is satisfied; (4) check and
repeat (1) to (3), and terminate the process when
each customer has a simulation “real” value of
pickup demand. Note that the above process is
the same for “real” delivery demands.

Step 2: Move along the route designed by
ACO and calculate the additional distance due to
route “failures” in terms of the “real” pickup and
delivery demands.

Step 3: Repeat Steps 1 and 2 for M times.

Step 4: Compute the average additional
distances that come out of simulation, and return
it as the additional distance the route.

6. Computational Results

6-1. Sensitivity analysis on parameters of
“vehicle indexes”

In this section, numerical experiments are given
to reveal the performance of the FCCP model of
the FMDVRP-SPD and the efficiency of the
heuristic algorithm. To evaluate the sensitivity of
the parameters of the model, different sizes of
instances  are  considered to  conduct
computational experiments. It is assumed that
there are 30 customers and 2 depots with 3
vehicles located at each depot for a small-sized
instance, 50 customers and 4 depots with 3
vehicles located at each depot for a medium-sized
instance, and finally 100 customers and 10 depots
with 4 vehicles located at each depot as a large-
sized instance. In each instance, the coordinates
of all customers and depots are generated
randomly in [50%50]. Moreover, the triangular

fuzzy demands of customers, such as d = (d,, ds,
d;), are selected randomly. More precisely, d;, d,,
and d; are randomly generated within [10,25],
[26,50] and [51,80], respectively. The general
specifications of the three test instances are listed
in Table 3. In Table 3, the serving time of
customers is expressed based on the distance
scale, and the name of each instance can be

summarized as the number of depots,| N, | and

the number of customers, | V. | (i.e.,|NO|><|NC|).

It is important to note that the test instances are
similar to the real-world cases, and the obtained
results can be applied for real applications.

Tab. 3. The relative data of the three instances

ID of Vehicle N.O - of Fixed cost Max. duration
Instances capacit vehicles at of of each vehicle
pactty each depot vehicles
2x30 600 20 o0
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4 x50 500 3 20 )
10 x 100 400 4 20 o0

The heuristic algorithm is encoded in MATLAB
7.10.0 on a computer, holding Intel® Core™
Duo CPU T2450 2.00 GHz and 1.00 GB of
RAM. The value of “vehicle indexes” (i.e., Cr'
and Cr* in the formulation) varied within the
interval of 0.1 to 1 with a step of 0.1. The average
computational results of 10 times are presented in
Tables 4—6 for three different size test instances,
respectively. The columns of all tables are
respectively named as the “vehicle indexes”, the

planned routes, the additional distances, the
routing costs that include the planned routes and
additional distances, the vehicle costs, the total
costs that consist of routing costs as well as
vehicle costs, and finally the CPU time of
solutions. For convenience, the results of Tables
4-6 are depicted in Figs. 3-5, respectively. As
seen in Tables 4-6 and also in Figs. 3—5, when
the value of “vehicle indexes” is equal to 0.6, the
total cost has a minimum amount.

Tab. 4. Computational results for 2 x 30 instance with different “vehicle indexes”

“Vehicle Planned  Additional Routing Vehicle Total CPU Time
indexes”  distances distances costs costs costs (second)
0.1 250.7 67.2 317.9 40 357.9 6
0.2 255.3 58.7 313.9 40 353.9 6
0.3 261.1 47.0 308.1 40 348.1 7
0.4 266.7 39.1 305.8 40 345.8 6
0.5 270.4 323 302.8 40 342.8 6
0.6 275.6 18.6 294.2 40 334.2" 6
0.7 285.9 9.3 295.2 60 355.2 5
0.8 293.5 4.2 297.7 60 357.7 5
0.9 296.9 0.5 297.4 80 377.4 5
1.0 307.7 0.0 307.7 80 387.7 o)

*Bold number indicates the minimum total cost

Tab. 5. Computational results for 4 x 50 instance with different “vehicle indexes”

“Vehicle Planned  Additional Routing Vehicle Total CPU Time
indexes” distances distances costs costs costs (second)
0.1 317.0 80.3 397.3 60 457.3 15
0.2 320.7 71.2 391.9 60 451.9 14
0.3 3233 58.5 381.8 80 461.8 15
0.4 328.8 52.1 380.8 80 460.8 17
0.5 343.6 39.3 382.9 80 462.9 14
0.6 350.1 20.9 371.0 80 451.0° 16
0.7 378.8 6.8 385.7 100 485.7 14
0.8 386.0 2.6 388.6 120 508.6 14
0.9 394.0 0.3 394.3 140 5343 15
1.0 450.7 0.0 450.7 140 590.7 15

*Bold number indicates the minimum total cost

Tab. 6. Computational results for 10 x 100 instance with different “vehicle indexes”

“Vehicle Planned  Additional Routing Vehicle Total CPU Time
indexes” distances distances costs costs costs (second)
0.1 463.9 198.9 662.8 140 802.8 38
0.2 489.7 170.5 660.2 140 800.2 35
0.3 505.7 143.4 649.2 160 809.2 41

International Journal of Industrial Engineering & Production Research, September 2017, Vol. 28, No. 3



Two-stage Stochastic Programing Based on the
Accelerated Benders Decomposition for Designing

0.4 519.7 131.3
0.5 5334 88.5
0.6 538.3 314
0.7 568.0 7.9
0.8 572.5 1.0
0.9 600.2 0.0
1.0 616.8 0.0

651.0
621.8
569.7
575.9
573.5
600.2
616.8
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180 831.0 32
200 821.8 39
220 789.7° 44
260 835.9 35
300 873.5 31
320 920.2 37
340 956.8 39

“Bold number indicates the minimum total cost

According to Figs. 3-5, lower values of “vehicle
indexes” denote a tendency to use total vehicle
capacity. These values are associated with the
routes with the shorter planned distances.
Furthermore, lower values of “vehicle indexes”
increase the number of cases in which a vehicle
visits customers, but it is unable to serve them,
thereby increasing the total additional distance
due to the route “failure”. Higher values of
“vehicle indexes” are characterized by less
utilization of vehicle capacity along with fewer
additional distance to cover due to “failures”.

Consequently, in this analysis, the proper value
of “vehicle indexes” is approximately around 0.6,
considering the total cost.

Moreover, at high “vehicle indexes” value, to
ensure high service to customers, the decision-
maker considers fewer customers for each cluster
to increase the number of clusters. In addition,
because each cluster is supported by one vehicle,
the cost of employing the vehicle may be high.
As seen in Table 4-6, when the value of “vehicle
indexes” has increased, the cost (or the number)
of deploying the vehicles is also grown.

500
400 g
- - - - -
-----.--------‘-----.----“"-.----

300

200 Planned distances |-
e A dditional distances
= = = Total costs

100

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 3. The cost changes with various “vehicle indexes” for 2 x 30 instance.
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400
300
e Plan distances
200 = Additional distances |
= == = Total costs
100
\\
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fig. 4. The cost changes with various “vehicle indexes” for 4 x 50 instance.
1100
1000
900 — - = - -
o o=
-
800 . L = __‘-------.’__-—""
700
600
500 |- pee——
400 Plan distances
300 e A dditional distances | ___.
200 otalcosts |
100 \
0
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

Fig. 5. The cost changes with various “vehicle indexes” for 10 x 100 instance.

6-2. Performance evaluation of the heuristic
algorithm

To evaluate the efficiency of the presented
heuristic algorithm, a computational experiment
is carried out in this section. The efficiency of the
proposed method is evaluated using 14 standard
benchmark test problems of CVRP presented by
[100]. Tt is noted that each test problem of
FMDVRP-SPD can be reduced to a CVRP.
Actually, if the number of depots equals 1, the
pickup demands equal 0, and the left and right
bounds of the triangular fuzzy demands are

equal; then, the FMDVRP-SPD is changed to
CVRP. The comparative results are summarized
in Table 7. The first column of Table 7 represents
the ID number of each test problem. The second
column reports the best-known solutions (BKS)
that are given in the literature [101]. The
solutions and CPU times obtained by two
approaches: SS-ACO of [102] and PSO of [103],
as shown in the next columns. The last column of
the table shows the solution and CPU time of the
heuristic algorithm.

Results of Table 7 indicate that the heuristic
algorithm in comparison with two approaches has
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been able to obtain 8 best-known solutions out of
the 14 test problems (see the last row of Table 7).
It is noted that since the computer systems of the
researchers are different together, then it seems
that the comparison between run time of the

approaches with the heuristic algorithm is not
accurate. Consequently, computational results
express that the heuristic algorithm is competitive
with other algorithms in terms of solution quality.

Tab. 7. Computational results of heuristic algorithm on standard test problems of CVRP.

SS-ACO PSO Heuristic
D of algorithm
Instance BKS Best (;PU Best CPU Best CPU
Cost time Cost time Cost time
(s) (s) (s)
Cl 524.61 524.61 3239 524.61 — 524.61 14
C2 83526 83526 41.23 844.42 — 835.26 23
C3 826.14  830.14  70.67 829.4 826.14 36
C4 1028.42 1038.2 147.83 1048.89 - 1061.39 48
C5 1291.29 1307.18 416.98 1323.89 - 1351.36 52
Cé6 555.43  559.12 3828 555.43 - 555.43 17
Cc7 909.68 912.68 53.01 917.68 — 909.68 28
C8 865.94 869.34 123.68 867.01 — 865.94 37
c9 1162.55 11794 306.85 1181.14 - 1173.56 41
C10 1395.85 1410.26 596.03 1428.46 - 145536 45
Cl1 1042.11 1044.12 136.64 1051.87 - 1050.36 39
C12 819.56 824.31 91.88  819.56 — 819.56 38
C13 1541.14 1556.52 275.04 1546.2 — 1560.39 339
Cl4 866.37 870.26 217.33 866.37 — 866.37 33
No. of
BKS 2 4 8

—: The problem is not solved in the corresponding
study.

Bold numbers indicate that best-known solution
values are attained by the corresponding
approach.

7. Conclusion and Future Research
One of the main requirements of the
transportation management is to provide goods or
services from a supply center to various dispersed
points with significant economic implications. In
this study, a relevant problem in the
transportation management and reverse logistic
was investigated. The fuzzy multi-depot vehicle
routing problem with simultaneous pickup and
delivery (FMDVRP-SPD) was considered. The
problem via fuzzy credibility theory and chance-
constrained programming was modeled. Since the
problem was Np-hard, a heuristic algorithm with
three iterative phases that integrated K-means
clustering algorithm (K-MCA) and ant colony
optimization (ACO) was proposed to solve the
problem. In the third phase of the heuristic
algorithm, the additional distances due to fuzzy

demands and route “failures” were estimated by
stochastic simulation for each planned route. To
obtain the best sensitive parameters of the model,
named “vehicle indexes”, three test instances
with different sizes which are compatible with
real data were generated. The computational
experiments showed that the “vehicle indexes”
greatly influence the planned routes, additional
distances, and fixed cost of vehicles. Finally,
numerical experiments with standard test
problems of CVRP were carried out to show the
efficiency of the proposed heuristic algorithm.
This paper has some capable future research
clues: the first phase of the heuristic algorithm
(i.e., K-means clustering algorithm) can be
strengthened through the improvement process
such as swapping or re-assignment methods (i.e.,
2-Opt or 3-Opt), considering the FMDVRP-SPD
with fuzzy time windows; the other is developing
the FMDVRP-SPD by some more realistic
assumptions, e.g., heterogeneous vehicles and
depots with unequal capacities.
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